org.scijava.vecmath

## Class Point2d

• ### Constructor Detail

• #### Point2d

public Point2d(double x,
double y)
Constructs and initializes a Point2d from the specified xy coordinates.
Parameters:
x - the x coordinate
y - the y coordinate
• #### Point2d

public Point2d(double[] p)
Constructs and initializes a Point2d from the specified array.
Parameters:
p - the array of length 2 containing xy in order
• #### Point2d

public Point2d(Point2d p1)
Constructs and initializes a Point2d from the specified Point2d.
Parameters:
p1 - the Point2d containing the initialization x y data
• #### Point2d

public Point2d(Point2f p1)
Constructs and initializes a Point2d from the specified Point2f.
Parameters:
p1 - the Point2f containing the initialization x y data
• #### Point2d

public Point2d(Tuple2d t1)
Constructs and initializes a Point2d from the specified Tuple2d.
Parameters:
t1 - the Tuple2d containing the initialization x y data
• #### Point2d

public Point2d(Tuple2f t1)
Constructs and initializes a Point2d from the specified Tuple2f.
Parameters:
t1 - the Tuple2f containing the initialization x y data
• #### Point2d

public Point2d()
Constructs and initializes a Point2d to (0,0).
• ### Method Detail

• #### distanceSquared

public final double distanceSquared(Point2d p1)
Computes the square of the distance between this point and point p1.
Parameters:
p1 - the other point
• #### distance

public final double distance(Point2d p1)
Computes the distance between this point and point p1.
Parameters:
p1 - the other point
• #### distanceL1

public final double distanceL1(Point2d p1)
Computes the L-1 (Manhattan) distance between this point and point p1. The L-1 distance is equal to abs(x1-x2) + abs(y1-y2).
Parameters:
p1 - the other point
• #### distanceLinf

public final double distanceLinf(Point2d p1)
Computes the L-infinite distance between this point and point p1. The L-infinite distance is equal to MAX[abs(x1-x2), abs(y1-y2)].
Parameters:
p1 - the other point