org.ojalgo.matrix.decomposition

## Interface Tridiagonal<N extends Number>

• All Superinterfaces:
MatrixDecomposition<N>

```public interface Tridiagonal<N extends Number>
extends MatrixDecomposition<N>```
Tridiagonal: [A] = [Q][D][Q]H Any square symmetric (hermitian) matrix [A] can be factorized by similarity transformations into the form, [A]=[Q][D][Q]-1 where [Q] is an orthogonal (unitary) matrix and [D] is a real symmetric tridiagonal matrix. Note that [D] can/should be made real even when [A] has complex elements. Since [Q] is orthogonal (unitary) [Q]-1 = [Q]H and when it is real [Q]H = [Q]T.
Author:
apete
• ### Nested Class Summary

Nested Classes
Modifier and Type Interface and Description
`static interface ` `Tridiagonal.Factory<N extends Number>`
• ### Nested classes/interfaces inherited from interface org.ojalgo.matrix.decomposition.MatrixDecomposition

`MatrixDecomposition.Determinant<N extends Number>, MatrixDecomposition.EconomySize<N extends Number>, MatrixDecomposition.Hermitian<N extends Number>, MatrixDecomposition.Solver<N extends Number>, MatrixDecomposition.Values<N extends Number>`
• ### Field Summary

Fields
Modifier and Type Field and Description
`static Tridiagonal.Factory<BigDecimal>` `BIG`
`static Tridiagonal.Factory<ComplexNumber>` `COMPLEX`
`static Tridiagonal.Factory<Double>` `PRIMITIVE`
• ### Fields inherited from interface org.ojalgo.matrix.decomposition.MatrixDecomposition

`TYPICAL`
• ### Method Summary

All Methods
Modifier and Type Method and Description
`static <N extends Number>boolean` ```equals(MatrixStore<N> matrix, Tridiagonal<N> decomposition, NumberContext context)```
`MatrixStore<N>` `getD()`
`MatrixStore<N>` `getQ()`
`static <N extends Number>Tridiagonal<N>` `make(Access2D<N> typical)`
`default MatrixStore<N>` `reconstruct()`
`static <N extends Number>MatrixStore<N>` `reconstruct(Tridiagonal<N> decomposition)`
• ### Methods inherited from interface org.ojalgo.matrix.decomposition.MatrixDecomposition

`decompose, isComputed, reset`
• ### Field Detail

• #### BIG

`static final Tridiagonal.Factory<BigDecimal> BIG`
• #### COMPLEX

`static final Tridiagonal.Factory<ComplexNumber> COMPLEX`
• #### PRIMITIVE

`static final Tridiagonal.Factory<Double> PRIMITIVE`
• ### Method Detail

• #### make

`static <N extends Number> Tridiagonal<N> make(Access2D<N> typical)`
• #### equals

```static <N extends Number> boolean equals(MatrixStore<N> matrix,
Tridiagonal<N> decomposition,
NumberContext context)```
• #### reconstruct

`static <N extends Number> MatrixStore<N> reconstruct(Tridiagonal<N> decomposition)`
• #### getD

`MatrixStore<N> getD()`
• #### getQ

`MatrixStore<N> getQ()`
• #### reconstruct

`default MatrixStore<N> reconstruct()`
Specified by:
`reconstruct` in interface `MatrixDecomposition<N extends Number>`